Die Aufgaben bitte auf diesem Blatt lösen. Erlaubte Hilfsmittel: Taschenrechner

Aufgabe 1:

Beim Bungee-Jumping springt eine Person in ein Gummiseil (das im verwendeten Bereich dem hookeschen Gesetz gehorcht). Das Gummiseil hat im ungedehnten Zustand eine Länge von 8,0 m.

a) Hängt sich eine 80 kg schwere Person an das Gummiseil, so verlängert es sich auf 12,0 m. Berechne daraus die "Gummihärte" D.

$$s = s_2 - s_1 = 12 m - 8 m = 4 m$$

 $F = D \cdot s \iff \mathbf{D} = \frac{F}{s} = \frac{mg}{s} = \frac{80 kg \cdot 9.81 \frac{N}{kg}}{4 m} = 196.2 \frac{N}{m}$

A: Die Federkonstante beträgt 196,2 N/m.

b) Um **w**ie viel würde sich das Gummiseil dehnen, wenn man damit ein Massestück der Masse 250 kg hochheben würde?

$$F = D \cdot s \iff s = \frac{F}{D} = \frac{m g}{D} = \frac{250 \, kg \cdot 9,81 \frac{N}{kg}}{196,2 \frac{N}{m}} = 12,5 \, m$$

A: Das Seil würde sich um 12,5 m dehnen.

c) Wie würde sich das Ergebnis aus Aufgabe b) ändern, wenn man ein zweites, identisches Gummiseil an das erste Seil hängen würde?

$$\frac{1}{D_{Ges}} = \frac{1}{D_1} + \frac{1}{D_2} = \frac{1}{196,2 \frac{N}{m}} + \frac{1}{196,2 \frac{N}{m}} = \frac{20}{1962 \frac{N}{m}} \Leftrightarrow D_{Ges} = \frac{1962}{20} \frac{N}{m} = 98,1 \frac{N}{m}$$

$$s = \frac{F}{D_{Ges}} = \frac{m g}{D_{Ges}} = \frac{250 kg \cdot 9,81 \frac{N}{kg}}{98,1 \frac{N}{m}} = 25 m$$

A: Das Seil würde sich um 25 m dehnen.

d) Nach einem Sprung durch die gleiche Person liegt der tiefste Punkt bei 20 m. Mit welcher Kraft wird diese Person wieder nach oben gerissen?

$$F = D \cdot s = 196,2 \frac{N}{m} \cdot (20 - 8) m = 2354,4 N$$

A: Die Kraft beträgt 2,35 kN.