Aufgabe 1:

Beim Bungee-Jumping springt eine Person in ein Gummiseil (das im verwendeten Bereich dem hookeschen Gesetz gehorcht). Das Gummiseil hat im ungedehnten Zustand eine Länge von 6,0 m.

a) Hängt sich eine 70 kg schwere Person an das Gummiseil, so verlängert es sich auf 9,0 m. Berechne daraus die "Gummihärte" D.

$$s = s_2 - s_1 = 9m - 6m = 3m$$
 $F = D \cdot s \Leftrightarrow D = \frac{F}{s} = \frac{m g}{s} = \frac{70 kg \cdot 9.81 \frac{N}{kg}}{3m} = 228.9 \frac{N}{m}$

A: Die Federkonstante beträgt 228,9 N/m.

b) Springt dieselbe Person von oben in das Gummiseil, so dehnt sich dieses bis auf eine Länge von 16,0 m. Welche Kraft wirkt auf diese Person im tiefsten Punkt?

$$F = D \cdot s = 228.9 \frac{N}{m} \cdot (16 \, m - 10 \, m) = 2289 \, N$$

A: Die Kraft beträgt fast 2,3 kN.

c) Um **w**ie viel würde sich das Gummiseil dehnen, wenn man damit ein Massestück der Masse 300 kg hochheben würde?

$$F = D \cdot s \iff s = \frac{F}{D} = \frac{m g}{D} = \frac{300 kg \cdot 9.81 \frac{N}{kg}}{228.9 \frac{N}{m}} = 12.86 m$$

A: Das Seil würde sich um fast 13 m dehnen.

d) Wie würde sich das Ergebnis aus Aufgabe c) ändern, wenn man ein zweites, identisches Gummiseil an das erste Seil hängen würde?

$$\frac{1}{D_{Ges}} = \frac{1}{D_1} + \frac{1}{D_2} = \frac{1}{228.9 \frac{N}{m}} + \frac{1}{228.9 \frac{N}{m}} = \frac{20}{2289 \frac{N}{m}} \Leftrightarrow D_{Ges} = \frac{2289}{20} \frac{N}{m} = 114.45 \frac{N}{m}$$

$$s = \frac{F}{D_{Ges}} = \frac{mg}{D_{Ges}} = \frac{300 \text{ kg} \cdot 9.81 \frac{N}{\text{kg}}}{114.45 \frac{N}{m}} = 25.71 \text{ m}$$

A: Das Seil würde sich um rund 26 m dehnen.