
<u>Aufgabe 1:</u> Bestimme zeichnerisch die Umkehrabbildung zu den folgenden Funktionsgraphen. Entscheide, ob es sich um eine Umkehrfunktion handelt.

Aufgabe 2: Bilde rechnerisch die Umkehrabbildung zu den gegeben Funktionen. Begründe mit Hilfe der Rechnung, ob es sich um eine Umkehrfunktion handelt.

$$y = -\frac{1}{2}x + 2 \quad | \quad -2$$

$$\Leftrightarrow \qquad y - 2 = -\frac{1}{2}x \quad | \quad :\left(-\frac{1}{2}\right)$$

$$\Leftrightarrow -2(y-2)=x \mid T$$

$$\Leftrightarrow -2y+4=x$$

Umkehrfunktion: f(x) = -2x + 4

2.2
$$f(x)=2x^2-32$$

 $y=2x^2-32 + 32$
 $\Rightarrow y+32=2x^2 + 2$
 $\Rightarrow \frac{1}{2}y+16=x^2 + \sqrt{1}$
 $\Rightarrow \pm \sqrt{\frac{1}{2}y+16}=x_{1/2}$

Keine Umkehrfunktion, da nicht eindeutig.

2.3
$$f(x)=x^3-8$$

 $y=x^3-8 + 8$
 $\Rightarrow y+8=x^3 + \sqrt[3]{oder}$
 $\Rightarrow \sqrt[3]{y+8}=x$

Umkehrfunktion: $f(x) = \sqrt[3]{x} + 8$

2.4
$$f(x) = \frac{1}{3}x^2 - 2x + 2$$

 $y = \frac{1}{3}x^2 - 2x + 2 \quad | \quad -y$
 $\Leftrightarrow 0 = \frac{1}{3}x^2 - 2x + 2 - y \quad | \quad \cdot 3$
 $\Leftrightarrow 0 = x^2 - 6x + 6 - 3y$

p-q-Formel (q = 6 - 3y) $\Rightarrow x_{1/2} = 3 \pm \sqrt{9 - (6 - 3y)} = 3 \pm \sqrt{3 + 3y}$

Keine Umkehrfunktion, da nicht eindeutig.

$$2.5 f(x) = \frac{1}{x}$$

$$y = \frac{1}{x} | \cdot \frac{x}{y} \text{ oder }^{-1}$$

$$\Leftrightarrow x = \frac{1}{y}$$

Umkehrfunktion: $f(x) = \frac{1}{x}$

2.6 $f(x)=2^x$ $y=2^{x} | \log_{2}()$ $\Leftrightarrow \log_2(y) = \log_2(2^x) \mid T$ $\Leftrightarrow \log_2(v) = x$

Umkehrfunktion: $f(x) = \log_2(x)$

(Definitionsbereich $D = \mathbb{R} \subset \{0\}$)

(Definitionsbereich $D = \mathbb{R}^+$)

2.7
$$f(x)=e^x+2$$

 $y=e^x+2$ | -2
 $\Leftrightarrow y-2=e^x$ | $\ln()$
 $\Leftrightarrow \ln(y-2)=\ln(e^x)$ | T
 $\Leftrightarrow \ln(y-2)=x$
Umkehrfunktion: $f(x)=\ln(x-2)$

(Definitionsbereich $x \in \mathbb{R}$; x > 2)

Mathematik GK 11 m1, AB 02 – Umkehrfunktionen (und NST) – Lösung 09.09.2019

Aufgabe 3: Bestimme – falls möglich – die Nullstellen der Funktionen aus Aufgabe 2.

3.1 $f(x) = -\frac{1}{2}x + 2$ $0 = -\frac{1}{2}x_n + 2 -2$ $\Leftrightarrow -2 = -\frac{1}{2}x_n :\left(-\frac{1}{2}\right)$ $\Leftrightarrow 4 = x_n T$	3.2 $f(x)=2x^2-32$ $0=2x_n^2-32 +32$ $\Leftrightarrow 32=2x_n^2 + 22$ $\Leftrightarrow 16=x_n^2 + \sqrt{16}$ $\Leftrightarrow \pm \sqrt{16}=x_{1/2}$ $\Leftrightarrow x_{1/2}=\pm 4$
Nullstelle: $x_n = 4$	Nullstellen: $x_1 = -4$; $x_2 = 4$
3.3 $f(x)=x^3-8$ $0 y=x_n^3-8 + 8$ $\Leftrightarrow 8=x_n^3 + \sqrt[3]{-oder}$ $\Leftrightarrow \sqrt[3]{8}=x_n$ $\Leftrightarrow x_n=2$ Nullstelle: $x_n=4$	3.4 $f(x) = \frac{1}{3}x^2 - 2x + 2$ $0 = \frac{1}{3}x_n^2 - 2x_n + 2 + 3$ $\Leftrightarrow 0 = x_n^2 - 6x_n + 6$ p-q-Formel oder quadratische Ergänzung $\Rightarrow x_{1/2} = 3 \pm \sqrt{9 - 6} = 3 \pm \sqrt{3}$
	Nullstellen: $x_1 = 3 - \sqrt{3}$; $x_2 = 3 + \sqrt{3}$
3.5 $f(x) = \frac{1}{x}$ $0 = \frac{1}{x_n} \frac{x_n}{y} oder^{-1}$ $\Leftrightarrow x_n = \frac{1}{0} \text{ geht nicht}$	3.6 $f(x)=2^{x}$ $0=2_{n}^{x} \log_{2}(1)$ $\Leftrightarrow \log_{2}(0)=x$ geht nicht Die Funktion hat keine Nullstellen!
Die Funktion hat keine Nullstellen!	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

3.7
$$f(x)=e^x+2$$

 $0=e_n^x+2 \mid -2$
 $\Leftrightarrow -2=e_n^x \mid \ln()$
 $\Leftrightarrow \ln(-2)=x_n$ geht nicht
Die Funktion hat keine Nullstellen!