Aufgabe 1: Berechne
$$\ln(4b) + \log_b \left(\frac{a^3c}{b^{-2}}\right) - \log_b \left(\frac{b^2c}{a^{-3}}\right) - \ln(b)$$

$$=7 \cdot e^{\ln(4\frac{b}{b}) + \log_b \left(\frac{a^3c}{b^{-2}} \cdot \frac{a^{-3}}{b^2c}\right)} = 7 \cdot e^{\ln(4) + \log_b(1)} = 7 \cdot e^{\ln(4) + 0} = 7 \cdot 4 = 28$$

Aufgabe 2: Der Graph einer quadratischen Funktion f geht durch die Punkte A(-8|-5), B(0|1) und C(10|-14).

2.1 Berechne die Funktionsgleichung mit Hilfe eines linearen Gleichungssystems.

(Kontrolllösung: $f(x) = -\frac{1}{8}x^2 - \frac{1}{4}x + 1$) Punkte einsetzen in $f(x) = ax^2 + bx + c$

I.
$$-5=a\cdot(-8)^2+b\cdot(-8)+c$$

II. $1=a\cdot0^2+b\cdot0+c$

III. $-14=a\cdot10^2+b\cdot10+c$

I. $-5=64a-8b+c$

II. $1=c$

III. $-14=100a+10b+c$

Setze $c=1$ ein:

Ia. $-5=64a-8b+1$ | -1

IIIa. $-14=100a+10b+1$ | -1

Ib. $-6=64a-8b$ | $\cdot 5$

IIIb. $-15=100a+10b$ | $\cdot 4$

Ic. $-30=320a-40b$ | $Ic.+IIIc.$

IIIc. $-60=400a+40b$

Id.
$$-90 = 720 a \mid :(-90)$$

 $\Leftrightarrow a = -\frac{1}{8}$

Setze $a=-\frac{1}{8}$ und c=1 in I. ein:

Ib.
$$-6=64 \cdot \left(-\frac{1}{8}\right) - 8b \Leftrightarrow -6=-8-8b$$

 $\Leftrightarrow 2=-8b \Leftrightarrow b=-\frac{1}{4}$

Also
$$f(x) = -\frac{1}{8}x^2 - \frac{1}{4}x + 1$$

2.2 Berechne den Scheitelpunkt der Parabel mit Hilfe der im Unterricht benutzten Methode.

$$f(x) = -\frac{1}{8}x^2 - \frac{1}{4}x + 1 = -\frac{1}{8}(x^2 + 2x) + 1 = -\frac{1}{8}(x^2 + 2x + 1 - 1) + 1 = -\frac{1}{8}[(x^2 + 1)^2 - 1] + 1$$
$$= -\frac{1}{8}(x + 1)^2 + \frac{1}{8} + 1 = -\frac{1}{8}(x + 1)^2 + \frac{9}{8} = -\frac{1}{8}(x + 1)^2 + 1,125$$

Also hat der Scheitelpunkt die Koordinaten S(-1|1,125).

2.3 Berechne die Nullstellen der Funktion.

Die Nullstellen sind die x-Koordinaten der Schnittpunkte $(x_n|0)$ mit der x-Achse. Einsetzen in Funktionsgleichung:

Lösung mit p-q-Formel:
$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 - \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

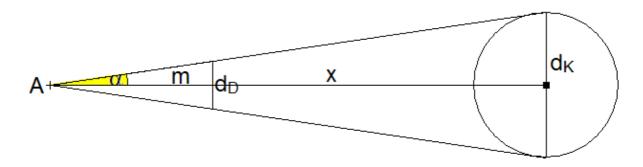
$$0 = -\frac{1}{8}x_n^2 + \frac{1}{4}x_n + 1 \quad | \cdot (-8)$$

$$0 = -\frac{1}{8}$$

<u>Aufgabe 3:</u> Mathilde steht in Berlin und sagt: "Ich kann mit dem Daumen meiner ausgestreckten Hand genau die Kugel des Fernsehturms abdecken".

Berechne Mathildes Entfernung zur Fernsehturmkugel.

Daten: Durchmesser Kugel: $d_K = 16 m$. Durchmesser Daumen: $d_D = 1 cm$. Entfernung Auge – Daumen: m = 40 cm.



x ist die Entfernung vom Auge bis zum Mittelpunkt der Kugel. Dann gilt mit dem Strahlensatz:

$$\frac{d_D}{2} = \frac{d_K}{2} \Leftrightarrow \frac{d_D}{m} = \frac{d_K}{x} \Leftrightarrow x = \frac{d_K \cdot m}{d_D} = \frac{16 \, m \cdot 0.4 \, m}{0.01 \, m} = 640 \, m$$
 Auch ohne Strahlensatz ist man

schnell beim gleichen Ergebnis: $\tan(\alpha) = \frac{\frac{d_D}{2}}{m}$ im kleinen Dreieck und $\tan(\alpha) = \frac{\frac{d_K}{2}}{x}$ im großen

Dreieck. Gleichsetzen führt zur Gleichung des Strahlensatzes.

Die Entfernung / zur Kugel ist die kleinste Strecke vom Auge zur Kugel. Deshalb muss vom Ergebnis noch der Radius der Kugel subtrahiert werden.

$$l = x - \frac{d_K}{2} = 640 \, m - 8 \, m = 632 \, m$$

A: Die Kugel ist 632 m entfernt.