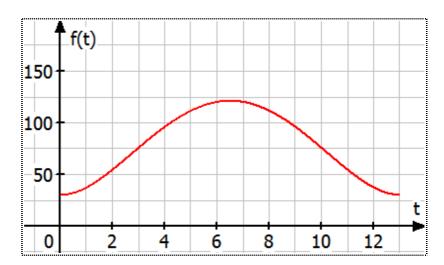
Aufgabe 1: Hochwasserwelle

Während einer Hochwasserwelle wurde in einer Stadt der Wasserstand *h* des Flusses in Abhängigkeit von der Zeit *t* gemessen.

Der Funktionsterm der Funktion, die den dargestellten zeitlichen Verlauf der Hochwasserwelle beschreibt, lautet

$$h(t) = \frac{5}{98}t^4 - \frac{65}{49}t^3 + \frac{845}{98}t^2 + 30$$

mit $0 \le t \le 13$ und t in Tagen.



1.1 Berechne den normalen Wasserstand des Flusses, d.h. den Wasserstand zu Beginn der Hochwasserwelle.

$$h(0) = \frac{5}{98} \cdot 0^4 - \frac{65}{49} \cdot 0^3 + \frac{845}{98} \cdot 0^2 + 30 = 30$$

A: Vor dem Hochwasser lag der Wasserstand des Flusses bei 30 cm.

1.2 Berechne, wie stark der Wasserstand am Ende des ersten Tages der Hochwasserwelle durchschnittlich pro Stunde gestiegen war.

$$h(1) = \frac{5}{98} \cdot 1^4 - \frac{65}{49} \cdot 1^3 + \frac{845}{98} \cdot 1^2 + 30 = 37,346939$$
 $\Delta f(t) = f(2) - f(1) = 37,35 - 30 = 7,35$

Das sind 7,35 cm pro Tag, also $\frac{7,35 cm}{24 h} = 0,30625 cm/h$

A: Am ersten Tag ist das Wasser pro Stunde durchschnittlich um 3,1 mm gestiegen.

1.3 Berechne, zu welchem Zeitpunkt der Wasserstand am stärksten stieg.

Gesucht ist die Wendestelle mit positiver Steigung.

$$h'(t) = 4 \cdot \frac{5}{98} t^3 - 3 \cdot \frac{65}{49} t^2 + 2 \cdot \frac{845}{98} t = \frac{10}{49} t^3 - \frac{195}{49} t^2 + \frac{845}{49} t = \frac{5}{49} \left(2 t^3 - 39 t^2 + 169 t \right)$$

$$h''(t) = \frac{5}{49} \left(6 t^2 - 78 t + 169 \right)$$

$$h'''(t) = \frac{5}{49} \left(12 t - 78 \right)$$

Notwendiges Kriterium für eine Wendestelle: $h''(t_w)=0$

$$0 = \frac{5}{49} \left(6 t_w^2 - 78 t_w + 169 \right) \quad | \quad \cdot \frac{49}{5}$$

$$0 = 6t_W^2 - 78t_W + 169 \quad | \quad :6$$

$$\Leftrightarrow 0 = t_W^2 - 13t_W + \frac{169}{6} \quad \text{p-q-Formel anwenden}$$

$$t_{1/2} = \frac{13}{2} \pm \sqrt{\left(-\frac{13}{2}\right)^2 - \frac{169}{6}} = \frac{13}{2} \pm \sqrt{\frac{169}{4} - \frac{169}{6}} = \frac{13}{2} \pm \sqrt{\frac{507}{12} - \frac{338}{12}} = \frac{13}{2} \pm \sqrt{\frac{169}{12}} = \frac{13}{2} \pm \frac{13}{\sqrt{12}} = \frac{13}{2} \pm \frac{13\sqrt{3}}{2 \cdot \sqrt{3}} = \frac{39}{6} \pm \frac{13\sqrt{3}}{6} = \frac{39 \pm 13\sqrt{3}}{6} \implies t_1 \approx 2,7472 \; ; \; t_2 \approx 10,2528$$

Hinreichende Bedingung für eine Wendestelle: $h'''(t_w) \neq 0$

$$h'''(t_1) = h'''(2,75) = \frac{5}{49} (12 \cdot 2,74 - 78) < 0$$

 $h'''(t_2) = h'''(10,25) = \frac{5}{49} (12 \cdot 10,25 - 78) > 0$

Beides sind also Wendestellen. Gesucht ist die Wendestelle mit positiver Steigung.

$$h'(t_1) = h'(2,75) = \frac{5}{49} (2 \cdot 2,75^3 - 39 \cdot 2,75^2 + 169 \cdot 2,75) = \frac{5}{49} (41,6 - 294,94 + 464,75) > 0$$

$$h'(t_2) = h'(10,25) = \frac{5}{49} (2 \cdot 10,25^3 - 39 \cdot 10,25^2 + 169 \cdot 10,25) = \frac{5}{49} (2153,78 - 4097,44 + 1732,25) < 0$$

A: Der stärkste Anstieg ist nach 2,74 Tagen, also nach 2 Tagen und 18 h.

1.4 Berechne, zu welchem Zeitpunkt der höchste Wasserstand erreicht war. Berechne außerdem, wie hoch der Wasserstand zu diesem Zeitpunkt war.

Gesucht ist das globale Maximum im Definitionsbereich [0;13].

Notwendiges Kriterium für ein Maximum: $h'(t_E)=0$

$$0 = \frac{5}{49} \left(2\,t_E^3 - 39\,t_E^2 + 169\,t_E \right) \quad | \quad \cdot \frac{49}{5} \\ \Leftrightarrow \quad 0 = 2\,t_E^3 - 39\,t_E^2 + 169\,t_E \quad | \quad : 2 \\ \Leftrightarrow \quad 0 = t_E^3 - \frac{39}{2}\,t_E^2 + \frac{169}{2}\,t_E \quad | \quad T \\ \Leftrightarrow \quad 0 = t_E \cdot \left(t_E^2 - \frac{39}{2}\,t_E + \frac{169}{2} \right) \quad \text{Damit ist} \quad t_3 = 0 \quad \text{der erste Kandidat für eine Extremstelle.}$$

Betrachte Klammer:

$$0=t_E^2-\frac{39}{2}t_E+\frac{169}{2}$$
 p-q-Formel anwenden

$$t_{4/5} = \frac{39}{4} \pm \sqrt{\left(-\frac{39}{4}\right)^2 - \frac{169}{2}} = \frac{39}{4} \pm \sqrt{\frac{1521}{16} - \frac{1352}{16}} = \frac{39}{4} \pm \sqrt{\frac{169}{16}} = \frac{39}{4} \pm \frac{13}{4}$$

$$\Rightarrow t_4 = \frac{26}{4} = 6.5 ; t_5 = \frac{52}{4} = 13$$

Hinreichende Bedingung für ein Maximum: $h''(t_E) < 0$

$$\begin{aligned} h''(t_3) &= h''(0) = \frac{5}{49} \left(6 \cdot 0^2 - 78 \cdot 0 + 169 \right) > 0 \quad \text{Minimum} \\ h''(t_3) &= h''(6,5) = \frac{5}{49} \left(6 \cdot 6,5^2 - 78 \cdot 6,5 + 169 \right) = \frac{5}{49} \left(253,5 - 507 + 169 \right) < 0 \quad \text{Maximum} \\ h''(t_4) &= h''(13) = \frac{5}{49} \left(6 \cdot 13^2 - 78 \cdot 13 + 169 \right) = \frac{5}{49} \left(1014 - 1014 + 169 \right) > 0 \quad \text{Minimum} \end{aligned}$$

Da wir nur ein Intervall betrachten, müsste man normalerweise die Intervallgrenzen auf Randmaxima untersuchen. Da die Ränder 0 und 13 aber Minima sind, erledigt sich das von selbst.

t₃ ist also die gesuchte Maximalstelle. Berechnung der Höhe des Wasserstands:

$$h(t_3) = h(6,5) = \frac{5}{98} \cdot 6,5^4 - \frac{65}{49} \cdot 6,5^3 + \frac{845}{98} \cdot 6,5^2 + 30 = 91,07 - 364,30 + 364,30 + 30 = 121,07462$$

A: Der höchste Wasserstand mit der Höhe von 1,21 m ist nach 6,5 Tagen, also 6 Tagen und 12 h, erreicht.

1.5 Berechne, zu welchem Zeitpunkt das Hochwasser am stärksten fiel.

Rechnung siehe Aufgabe 1.3

A: Der stärkste Abfall des Wasserstands ist nach 10,25 Tagen, also nach 10 Tagen und 6 h.

1.6 Berechne, an welchem Tag die Hochwasserwelle endgültig vorüber war.

Normaler Wasserstand: 30 cm. (siehe 1.1) Gesucht ist also der Zeitpunkt t_{Normal} , zu dem der Wasserstand wieder 30 cm beträgt, also $f(t_N)=30$

$$30 = \frac{5}{98} t_N^4 - \frac{65}{49} t_N^3 + \frac{845}{98} t_N^2 + 30 \quad | \quad -30$$

$$\Leftrightarrow 0 = \frac{5}{98} t_N^4 - \frac{65}{49} t_N^3 + \frac{845}{98} t_N^2 \quad | \quad T$$

$$\Leftrightarrow 0 = t_N^2 \cdot \left(\frac{5}{98}t_N^2 - \frac{65}{49}t_N + \frac{845}{98}\right)$$
 Damit ist $t_6 = 0$ die erste Lösung. Betrachte Klammer:

$$0 = \frac{5}{98} t_N^2 - \frac{65}{49} t_N + \frac{845}{98} \quad | \quad \frac{98}{5}$$

 $\Leftrightarrow 0 = t_N^2 - 26t_N + 169$ 2. Binomische Formel rückwärts

$$0 = (t_N - 13)^2 \mid \sqrt{} \pm \sqrt{0} = t_7 - 13 \mid +13$$

 $13=t_7$ Die erste Lösung ist der Normalwasserstand zu Beginn, also muss $t_7=13$ das Ende der Hochwasserwelle sein.

A: Das Hochwasser ist nach 13 Tagen zuende.

Aufgabe 4: Vollständige Funktionsuntersuchung

Führe eine vollständige Funktionsuntersuchung für die Funktion $f(x) = -\frac{1}{2}x^4 + 3x^3 - 6x^2 + 4x$ durch.

Dazu gehören alle Teilaufaben, wie sie im Unterricht besprochen wurden. Trage alle errechneten Ergebnisse ins Koordinatensystem auf diesem Blattes ein und skizziere den Graphen.

Kontrolllösungen: $H\left(\frac{1}{2}\left|\frac{27}{32}\right|; W_1\left(1\left|\frac{1}{2}\right|; W_1(2|0)\right)\right)$

- 0.) Ableitungen: $f'(x) = -2 \cdot x^3 + 9x^2 12x + 4$ $f''(x) = -6 \cdot x^2 + 18x 12$ $f'''(x) = -12 \cdot x + 18x 12$
- 1.) Definitionsbereich: $D=\mathbb{R}$
- 2.) Schnittpunkt mit y-Achse: $f(\mathbf{0}) = -\frac{1}{2}0^4 + 0x^3 0x^2 + 0x = \mathbf{0}$
- 3.) Nullstellen berechnen: Funktionsterm gleich null setzen:

$$\begin{aligned} 0 &= -\frac{1}{2} \, x_n^4 + 3 \, x_n^3 - 6 \, x_n^2 + 4 \, x_n \\ 0 &= -\frac{1}{2} \, x_n \cdot \left(x_n^3 - 6 \, x_n^2 + 12 \, x_n - 8 \right) \end{aligned} \text{ Damit ist } \quad \textbf{x_1=0} \text{ die erste Nullstelle. Betrachte Klammer:}$$

$$0=x_n^3-6x_n^2+12x_n-8$$
 Nullstelle raten: $0=2^3-6\cdot 2^2+12\cdot 2-8=8-24+23-8=0$

Polynomdivision:

$$(x^{3}-6x^{2}+12x-8):(x-2)=x^{2}-4x+4$$

$$=(x^{3}-2x^{2})$$

$$-4x^{2}+12x-8$$

$$=(-4x^{2}+8x)$$

$$4x-8$$

$$=(4x-8)$$
0 Also: $0=(x_{2}-2)\cdot(x_{n}^{2}-4x_{n}+4)$ Betrachte Klammer:

$$0 = x_n^2 - 4 x_n + 4 \mid T$$

$$\Leftrightarrow 0 = (x_n - 2)^2$$

 x_2 =2 ist also eine dreifache Nullstelle. (Wahrscheinlich also ein Sattelpunkt).

4.) Grenzwertverhalten:

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to -\infty} \left(-\frac{1}{2} x^4 + 3 x^3 - 6 x^2 + 4 x \right) = \lim_{x \to -\infty} x^4 \cdot \left(-\frac{1}{2} + \frac{3}{x} - \frac{6}{x^2} + \frac{4}{x^3} \right) = -\infty$$

5.) Extrempunkte berechnen:

Notwendige Bedingung für Extremstellen: $f'(x_E)=0$

$$0 = -2 \cdot x_E^3 + 9 x_E^2 - 12 x_E + 4 \quad | \quad : 2$$

$$\Leftrightarrow 0 = x_E^3 - 4.5 x_E^2 + 6 x_E - 2$$

Da x_2 =2 eine dreifache Nullstelle ist, muss es auch eine NST der ersten und der zweiten Ableitung sein:

$$\Leftrightarrow 0=2^3-4,5\cdot2^2+6\cdot2-2=8-18+12-2=0$$

Polynomdivision:

$$(x^{3}-4.5x^{2}+6x-2):(x-2)=x^{2}-2.5x+1$$

$$=(x^{3}-2x^{2})$$

$$-2.5x^{2}+6x-2$$

$$=(-2.5x^{2}+5x)$$

$$x-2$$

$$=(x-2)$$

0 Also: $0 = (x_2-2) \cdot (x^2-2.5x_n+1)$ Betrachte Klammer:

 $0=x_n^2-2.5x_n+1$ p-q-Formel anwenden:

$$\Rightarrow x_{2/3} = \frac{5}{4} \pm \sqrt{\left(-\frac{5}{4}\right)^2 - 1} = \frac{5}{4} \pm \sqrt{\frac{25}{16} - \frac{16}{16}} = \frac{5}{4} \pm \sqrt{\frac{9}{16}} = \frac{5}{4} \pm \frac{3}{4} \Rightarrow x_3 = \frac{5}{4} - \frac{3}{4} = \frac{2}{4} = \frac{1}{2} ; x_2 = \frac{5}{4} + \frac{3}{4} = \frac{8}{4} = 2$$

 $x_2=2$ ist wie erwartet eine doppelte NST der 1. Ableitung.

Kandidaten für Extremstellen sind also $x_2=2$ und $x_3=0.5$.

Hinreichende Bedingung für Extremstellen: $f''(x_E) \neq 0$

$$f''(x_2)=f''(2)=-6\cdot 2^2+18\cdot 2-12=-24+36-12=0$$
 wie erwartet

Vorzeichenwechsel-Kriterium:

$$f'(x_2-\epsilon)=f'(1)=-2\cdot1^3+9\cdot1^2-12\cdot1+4=-2+9-12+4=-1$$

 $f'(x_2+\epsilon)=f'(3)=-2\cdot3^3+9\cdot3^2-12\cdot3+4=-54+81-36+4=-5$

Kein VZW, also keine Extremstelle.

$$f''(x_3) = f''(0,5) = -6 \cdot 0,5^2 + 18 \cdot 0,5 - 12 = -1,5 + 9 - 12 < 0 \Rightarrow \text{Maximum}.$$

y-Koordinate des Maximums berechnen:

$$f(0,5) = -\frac{1}{2}0,5^4 + 3 \cdot 0,5^3 - 6 \cdot 0,5^2 + 4 \cdot 0,5 = -\frac{1}{32} + \frac{3}{8} - \frac{6}{4} + 2 = -\frac{1}{32} + \frac{12}{32} - \frac{48}{32} + \frac{64}{32} = \frac{27}{32}$$

Der einzige Hochpunkt liegt also bei $H\left(\frac{1}{2} \left| \frac{27}{32} \right| \right)$.

6.) Wendepunkte berechnen:

Notwendige Bedingung für Wendestellen: $f''(x_w)=0$

$$0 = -6 \cdot x_W^2 + 18x_W - 12 \mid :(-6)$$

 $0=x_w^2-3x_w+2$ p-q-Formel anweden:

$$x_{2/4} = 1,5 \pm \sqrt{(-1,5)^2 - 2} = 1,5 \pm \sqrt{2,25 - 2} = 1,5 \pm \sqrt{0,25} = 1,5 \pm 0,5$$

 $\Rightarrow x_4 = 1,5 - 0,5 = 1 \; ; \; x_2 = 1,5 + 0,5 = 2$

Hinreichende Bedingung für Wendestellen: $f'''(x_w) \neq 0$

$$f'''(x_4) = f'''(1) = -12 \cdot 1 + 18 = 6 \Rightarrow \text{Wendestelle}$$

 $f'''(x_2) = f'''(2) = -12 \cdot 2 + 18 = -6 \Rightarrow \text{Wendestelle}$

y-Koordinaten der Wendepunkte berechnen:

$$f(x_4) = f(1) = -\frac{1}{2}1^4 + 3 \cdot 1^3 - 6 \cdot 1^2 + 4 \cdot 1 = -0.5 + 3 - 6 + 4 = 0.5$$
 Also $W_1\left(1 \middle| \frac{1}{2}\right)$

$$f(x_2)=f(2)=0$$
 Also $W_2(2|0)$ Sattelpunkt, denn es ist auch $f'(x_2)=0$

7.) Wendetangenten berechnen:

$$f_T(x) = mx + n$$

Für $x_2=2$: $m_1=f'(x_2)=f'(2)=0$ Steigung 0 am Sattelpunkt.

 m_1 und die Koordinaten von W_1 in der Funktionsgleichung der Tangente einsetzen:

$$0=0\cdot 2+n_1 \Leftrightarrow n_1=0$$

Also $f_{T1}(x)=0$ (beim Sattelpunkt braucht man da nicht wirklich eine Rechnung)

Für
$$x_4=1$$
: $m_2=f'(x_4)=f'(1)=-1$ (s.o.)

 m_2 und die Koordinaten von W_2 in der Funktionsgleichung der Tangente einsetzen:

$$0.5 = -1.1 + n_2 + 1 \Leftrightarrow n_2 = 1.5$$
 Also $f_{T2}(x) = -1.x + 1.5$

Skizze:

