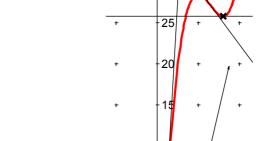
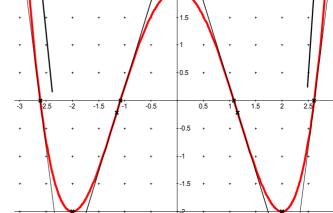

Mathematik GK 12 m2, AB 01 - Kurvendiskussion/Textaufg. - Lösung 03.11.2015

<u>Aufgabe 1:</u> Führe eine vollständige Funktionsuntersuchung für die folgenden Funktionen durch:

	$\boxed{1.1 f(x) = 3x^4 - 8x^3 + 6x^2}$	1.2 $f(x)=0.1 x^3+0.3 x^2-0.9 x+0.5$
1. Ableitung	$f'(x)=12x^3-24x^2+12x$	$f'(x) = 0.3 x^{2} + 0.6 x - 0.9$ = 0.3 (x ² + 2x - 3)
2. Ableitung	$f''(x)=36x^2-48x+12$	f''(x)=0.6x+0.6
3. Ableitung	f'''(x) = 72x - 48	f'''(x)=0.6
Verhalten $x \to \pm \infty$	$\lim_{\substack{x \to -\infty \\ \lim_{x \to \infty}}} f(x) = +\infty$	$\lim_{\substack{x \to -\infty \\ \lim_{x \to \infty}} f(x) = +\infty}$
Nullstellen	$x_n = 0$	$x_{n1} = -5$; $x_{n2} = 1$
Tangentensteigungen NST	$f'(x_n)=0$	$f'(x_{n1})=3.6$ $f'(x_{n2})=0$
Tiefpunkte	TP(0 0)	TP(1 0)
Hochpunkte	keine	HP (-3 3,2)
Wendepunkte links→rechts	$WP_1\left(\frac{1}{3}\left \frac{33}{81}\right)\right)$	keine
Wendepunkte rechts→links	WP ₂ (1 1)	WP ₁ (-1 1,6)
Tangentensteigungen WP	$f'\left(\frac{1}{3}\right) = \frac{48}{27}$ $f'(1) = 0$	f'(-1)=-1,2
Bemerkung	Wendepunkt WP ₂ ist ein Sattelpunkt.	Nullstelle x_{n2} = 1 durch Probieren.





Mathematik GK 12 m2, AB 01 – Kurvendiskussion/Textaufg. – Lösung

			_
NΩ	11	.201	_
U.S.		.ZU I	-

	1.3 $f(x) = \frac{1}{5}x^3 - \frac{39}{10}x^2 + 24x - \frac{95}{5}$	$1.4 f(x) = \frac{1}{4}x^4 - 2x^2 + 2$		
1. Ableitung	$f'(x) = \frac{3}{5}x^2 - \frac{78}{10}x + 24$	$f'(x)=x^3-4x$		
2. Ableitung	$f''(x) = \frac{6}{5}x - \frac{78}{10}$	$f''(x)=3x^2-4$		
3. Ableitung	$f'''(x) = \frac{6}{5}$	f'''(x)=3		
Verhalten x → ±∞	$\lim_{x \to -\infty} f(x) = +\infty \qquad \lim_{x \to \infty} f(x) = +\infty$	$\lim_{x \to -\infty} f(x) = +\infty \qquad \lim_{x \to \infty} f(x) = +\infty$		
Nullstellen	$x_n \approx 0.92$	$x_{n1} = -\sqrt{4 + \sqrt{8}}; x_{n2} = -\sqrt{4 - \sqrt{8}}$ $x_{n3} = +\sqrt{4 - \sqrt{8}}; x_{n4} = +\sqrt{4 + \sqrt{8}}$		
Tangenten- steigungen NST	$f'(x_n) \approx 17,31$	$f'(x_{n1}) \approx -7.39; f'(x_{n2}) \approx -3.06$ $f'(x_{n3}) \approx 3.06; f'(x_{n4}) \approx 7.39$		
Tiefpunkte	TP(8 25,8)	$TP_1(-2 -2); TP_2(+2 -2)$		
Hochpunkte	HP (5 28,5)	HP(0 2)		
Wendepunkte links→rechts	keine	$WP_1(-2/\sqrt{3} -2/9)$		
Wendepunkte rechts→links	WP ₁ (6,5 27,15)	$WP_2(2/\sqrt{3} -2/9)$		
Tangenten- steigungen WP	f'(6,5)=-1,35	$f'\left(-\frac{2}{\sqrt{3}}\right) = \frac{16}{3\sqrt{3}} \approx 3,08$ $f'\left(\frac{2}{\sqrt{3}}\right) = -\frac{16}{3\sqrt{3}} \approx -3,08$		
Bemerkung	Die Nullstellen ist im Rahmen unserer Möglichkeiten nicht genau zu ermitteln.	Funktion ist achsensymmetrisch zur y-Achse.		
Skizzen: $1.3 + f(x) \uparrow 30 + 1.4 \cdot \uparrow 1$				

<u>Aufgabe 2:</u> Die Flughöhe *y* eines Fußballs beim Freistoß in Abhängigkeit von der Entfernung vom Abschussort *x* lässt sich näherungsweise durch die Funktion

$$y = -\frac{1}{288}x^3 + \frac{1}{16}x^2 \text{ für } x > 0$$
 beschreiben.

Ableitungen:
$$f'(x) = -\frac{1}{96}x^2 + \frac{1}{8}x$$
 $f''(x) = -\frac{1}{48}x + \frac{1}{8}$
 $f'''(x) = -\frac{1}{48}$

2.1 Welche maximale Höhe erreicht der Ball?

Gesucht wird ein relatives Maximum der Funktion f.

$$f'(x) = -\frac{1}{96}x^2 + \frac{1}{8}x = \frac{1}{8}x\left(\frac{1}{12}x + 1\right)$$
 $\frac{1}{8}x_n\left(\frac{1}{12}x_n + 1\right) = 0$

 $\Rightarrow x_1 = 0$; $x_2 = 12$ x_1 ist nicht im Definitionsbereich, also kommt nur x_2 in Frage.

An der Stelle $x_2=12$ gilt f''(x-2)<0. Außerdem hat die 1. Ableitung einen Vorzeichenwechsel von + nach –. Somit liegt bei x=12 ein Maximum vor. Berechnung der y-Koordinate des Hochpunktes: f(12)=-6+9

A: Der Ball erreicht eine maximale Flughöhe von 3 m.

2.2 Überfliegt der Ball die Abwehrmauer (2 m hoch) in 9,15 m Abstand?

$$f(9,15) = -1288 \cdot (9,15)^3 + 116 \cdot (9,15)^2 = 2,57$$

A: In 9,15 m Entfernung hat der Ball eine Flughöhe von 2,57 m, er überfliegt also die Abwehrmauer.

2.3 Wo kommt der Ball wieder auf den Boden?

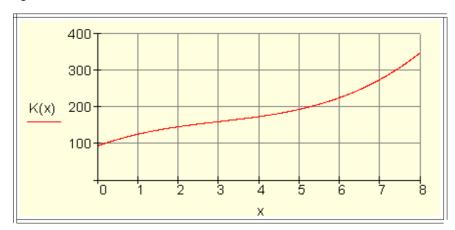
Gesucht ist die Entfernung (der x-Wert), bei der der Ball wieder die Höhe null hat, also die Nullstellen der Funktion.

$$f(x) = -\frac{1}{288}x^3 + \frac{1}{16}x^2 = -\frac{1}{288}x^2 \left(-\frac{1}{18}x + 1\right) \qquad 0 = -\frac{1}{288}x_n^2 \left(-\frac{1}{18}x_n + 1\right)$$

 $\Rightarrow x_1 = 0$; $x_2 = 18$ x_1 ist nicht im Definitionsbereich (bzw. der Abschussort).

A: In einer Entfernung von 18 m kommt der Ball auf den Boden.

2.4 Wie weit entfernt vom Tor wurde der Freistoß ausgeführt, wenn der Ball in 2 m Höhe die Torlinie überschreitet?


$$2 = -\frac{1}{288}x_m^3 + \frac{1}{16}x_m^2 \Leftrightarrow 0 = -\frac{1}{288}x_m^3 + \frac{1}{16}x_m^2 - 2$$

Um diese Gleichung zu lösen, müsste man $x_1 = -5$ raten (obwohl dies außerhalb des Definitionsbereiches liegt), um mit (x+5) eine Polynomdivision durchzuführen. Anschließend erhält man die beiden anderen Lösungen $x_2 \approx 7.35$ und $x_3 \approx 15.64$.

Das macht die Aufgabe natürlich fast unlösbar, da man nicht auf die erste Lösung kommt.

A: Der Freistoß wurde entweder in 7,35 m oder in 15,64 m Entfernung ausgeführt.

<u>Aufgabe 3:</u> Die Kostenfunktion $K(x)=x^3-9x^2+40x+94$ eines Krankenhauses stellt den Zusammenhang zwischen der Patientenzahl x und den Gesamtkosten dar.

x = 1 bedeutet 100 Patienten, y = 1 bedeutet 1000 \in / Tag.

Berechne, für welche Patientenzahl ist die Kostenzunahme am geringsten ist.

Die gesuchte Lösung ist das kleinste Minimum der 1. Ableitung der Funktion. Das ist gleichzeitig eine Wendestelle der Ursprungsfunktion mit dem Wechsel von einer Rechts- in eine Linkskurve.

Ableitungen:
$$K'(x)=3x^2-18x+40$$
 $K''(x)=6x-18$ $K'''(x)=6$

Gesucht sind also die Nullstellen der zweiten Ableitung. Das ist hier sehr einfach:

$$0 = 6x_n - 18 \quad \Leftrightarrow \quad 18 = 6x_n \quad \Leftrightarrow \quad 3 = x_n$$

 $K'''(x_n) > 0$ bzw. Vorzeichenwechselkriterium:

$$K''(2)=-6$$

 $K''(4)=6$ Also ein VZW von – nach +: Wir haben also das gesuchte Minimum der 1.

Ableitung bzw. die Wendestelle der Ursprungsfunktion gefunden.

A: Die Kostenzunahme ist für 300 Patienten am geringsten.

Mathematik GK 12 m2, AB 01 - Kurvendiskussion/Textaufg. - Lösung

03.11.2015

Aufgabe 4: Die nebenstehende Abbildung zeigt die über einen längeren Zeitraum erfasste Anzahl der momentanen Besucher einer Internetseite im Zeitraum von 6.00 Uhr morgens bis 20.00 Uhr abends.

Der Funktionsterm der Funktion, die die oben dargestellte Anzahl A der momentanen Besucher der Internetseite in Abhängigkeit von der Zeit t beschreibt, lautet

600 500 400 300 200 100 0 10 14 16 18

$$A(t) = -t^3 + 30t^2 - 225t + 520$$
 mit $6 \le t \le 20$ und t in Stunden.

en:
$$A'(t) = -3t^2 + 60t - 225$$

Ableitungen:
$$A'(t) = -3t^2 + 60t - 225$$
 $A''(t) = -6t + 60$ $A'''(t) = -6$

4.1 Berechne, wie viele Interessenten die Internetseite um 8.00 Uhr besuchen.

$$A(8) = -8^3 + 30 \cdot 8^2 - 225 \cdot 8 + 520 = 128$$

A: Um 8.00 Uhr besuchen 128 Interessenten die Internetseite.

4.2 Berechne, um wie viel sich die Anzahl der Besucher zwischen 8.00 Uhr und 12.00 Uhr durchschnittlich verändert.

Die durchschnittliche Steigung ist die Steigung der Sekanten durch die Punkte $P_1(8|f(8))$ und $P_{2}(12|f(12))$

$$A(12) = -12^3 + 30 \cdot 12^2 - 225 \cdot 12 + 520 = 412$$
 $m = \frac{\Delta y}{\Delta x} = \frac{A(12) - A(8)}{12 - 8} = \frac{412 - 128}{4} = \frac{284}{4} = 71$

A: In Durchschnitt kommen in der Zeit zwischen 8.00 und 12.00 Uhr 71 Besucher pro Stunde dazu.

4.3 Berechne, um welche Uhrzeit 270 Interessenten die Internetseite besuchen.

$$270 = -t^3 + 30t^2 - 225t + 520 \Leftrightarrow 0 = -t^3 + 30t^2 - 225t + 250$$

Im abgebildeten Graphen sieht man, dass t_1 = 10 eine mögliche Lösung sein könnte.

Probieren: $A(10) = -12^3 + 30 \cdot 12^2 - 225 \cdot 12 + 520 = 270$ passt. Also Polynomdivision

$$(-t^{3}+30t^{2}-225t+250):(t-10)=-t^{2}+20t-25$$

$$-t^{3}+10t^{2}$$

$$20t^{2}-225t$$

$$20t^{2}-200t$$

$$-25t+250$$

$$-25t+250$$

Restliche Nullstellen:

$$-t^{2}+20t-25=0 \Leftrightarrow t^{2}-20t+25=0$$

$$t_{2/3}=10\pm\sqrt{10^{2}-25}=10\pm\sqrt{75}$$

$$\Rightarrow t_{2}=10-\sqrt{75}\approx1,3397 ; t_{3}=10+\sqrt{75}\approx18,6603$$

t₂ liegt nicht im Definitionsbereich. Also lautet die Antwort:

A: Um 10.00 Uhr und um etwa 18.40 Uhr besuchen 270 Interessenten die Webseite.

4.4 Berechne, um welche Uhrzeit sich die Anzahl der Besucher am stärksten vergrößert.

Gesucht ist das größte Maximum der 1. Ableitung, bzw. eine Wendestelle der der Ursprungsfunktion mit dem Wechsel von einer Links- in eine Rechtskurve.

Die Berechnung der Nullstellen der zweiten Ableitung ist wieder sehr einfach.

$$0=-6t_n+60 \Leftrightarrow -60=6t_n \Leftrightarrow 10=t_n$$

 $A'''(x_n) > 0$ bzw. Vorzeichenwechselkriterium:

$$A''(8) = 12$$

 $K''(12) = -12$ Also ein VZW von + nach –: Wir haben also das gesuchte Maximum der 1.

Ableitung bzw. die Wendestelle der Ursprungsfunktion gefunden.

A: Der Anstieg der Besucherzahl ist um 10.00 Uhr am größten.

4.5 Berechne, um welche Uhrzeit die meisten Interessenten die Internetseite besuchen. Wie viele Interessenten sind dies?

Gesucht ist das größte Maximum der Funktion. Berechnung der Nullstellen der 1. Ableitung:

$$0 = -3t_n^2 + 60t_n - 225 \Leftrightarrow 0 = t_n^2 - 20t_n + 75$$
 p-q-Formel:

$$t_{1/2} = 10 \pm \sqrt{10^2 - 75} = 10 \pm \sqrt{25}$$

$$\Rightarrow t_1 = 10 - 5 = 5$$
; $t_2 = 10 + 5 = 15$

t₂ liegt nicht im Definitionsbereich. Also lautet die Antwort:

A: Um 15.00 Uhr besuchen die meisten Interessenten die Webseite.

Aufgabe 5: An steilen schneebedeckten Berghängen kommt es im Frühjahr häufig zum Abgleiten von flachen, etwas überhängenden Schneemassen, sogenannten Schneebrettern. Den Weg, den ein Schneebrett an einem Berghang mit 60° Neigung in Abhängigkeit der Zeit t zurücklegt, kann mit Hilfe der Funktion $s(t) = 4,285t^2 - 0,035t$ beschrieben werden.

5.1 Bestimme die Durchschnittsgeschwindigkeit des Schneebretts zwischen 3 und 5 Sekunden.

$$s(3)=4,285\cdot3^2-0,035\cdot3=38,46m$$
 $s(5)=4,285\cdot5^2-0,035\cdot5=106,95m$

Durchschnittsgeschwindigkeit:
$$v = \frac{\Delta s}{\Delta t} = \frac{106,95 \text{ m} - 38,46 \text{ m}}{5 \text{ s} - 3 \text{ s}} = \frac{68,49 \text{ m}}{2 \text{ s}} = 34,245 \frac{m}{s} = 123,282 \frac{km}{h}$$

A: Die Durchschnittsgeschwindigkeit beträgt etwa 123 km/h.

5.2 30 m unterhalb der Abbruchstelle sind zur Verlangsamung abgleitender Schneebretter Hindernisse befestigt. Berechne, mit welcher Geschwindigkeit die Schneemassen auf die Hindernisse treffen.

$$30 = 4,285 t^2 - 0,035 t$$
 | -30
⇔ $0 = 4,285 t^2 - 0,035 t - 30$ | :4,285
⇔ $0 = t^2 - \frac{7}{857} t - \frac{6000}{857}$ p-q-Formel

$$t_{1/2} = \frac{7}{1714} \pm \sqrt{\frac{49}{2937796}} + \frac{20568000}{2937796} \approx \frac{7}{1714} \pm 2,6460$$

$$\Rightarrow t_1 = -2,6419$$
 ; $t_2 = 2,6501$

Eine negative Zeit ergibt für die Aufgabe keinen Sinn (bzw. ist außerhalb der Definitionsmenge, also setzen wir t_2 in die Ableitung ein, um die momentane Geschwindigkeit für diesen Zeitpunkt auszurechnen.

Ableitung:
$$s'(t) = 9.57 t - 0.035$$
 $s'(t_2) \approx 9.57 \cdot 2.6501 - 0.035 = 22.6410$

$$22.6410 \, m/s = 81.5076 \, km/h$$

A: An den Hindernissen beträgt die Geschwindigkeit etwa 81,5 km/h.

5.3 Ermittle, mit welcher Geschwindigkeit die Schneemassen nach 100 m das Tal erreichen, wenn man annimmt, dass der Schnee reibungsfrei ins Tal abgleiten kann.

Lösungsweg wie bei b):
$$100=4,285 t^2-0,035 t$$

Ergebnis:
$$\Rightarrow t_1 = -4.83$$
; $t_2 = 4.83$ $s'(t_2) \approx 41.36$ 41.36 $m/s = 148.896$ km/h

A: Im Tal beträgt die Geschwindigkeit etwa 149 km/h.