Aufgabe 1: Grenzwerte

1.1. Gib für die folgenden Begriffe jeweils eine gültige Definition aus dem Unterricht an:

1.1.1 Monotonie einer Folge

Def.: Monotonie einer Folge

Eine Folge (a_n) mit $a_n \in \mathbb{R}$ heißt (streng) monoton steigend, wenn gilt: $a_n \le a_{n+1} (a_n < a_{n+1}) \forall n \in \mathbb{N}_0$ Eine Folge (a_n) mit $a_n \in \mathbb{R}$ heißt (streng) monoton fallend, wenn gilt: $a_n \ge a_{n+1} (a_n > a_{n+1}) \forall n \in \mathbb{N}_0$

1.1.2 Beschränktheit einer Folge

Def.: Beschränktheit einer Folge

Eine Folge (a_n) mit $a_n \in \mathbb{R}$ heißt nach oben beschränkt, wenn gilt: $\exists S \in \mathbb{R} : S \ge a_n \forall n$ Eine Folge (a_n) mit $a_n \in \mathbb{R}$ heißt nach oben beschränkt, wenn gilt: $\exists I \in \mathbb{R} : I \le a_n \forall n$

Eine Folge heißt beschränkt, falls sie nach oben und nach unten beschränkt ist.

1.2. Prüfe mit Hilfe der Definition des Grenzwerts, ob die Folge (a_n) den Grenzwert G besitzt:

Für die folgenden Aufgaben wird die Grenzwertbedingung $|a_n-G|<\epsilon$ für $\epsilon>0$ benutzt. Ist G der Grenzwert, so wird sich eine Bedingung für ein n_0 finden, so dass für alle $n>n_0$ die Grenzwertbedingung erfüllt ist.

$$\begin{vmatrix} \mathbf{1.2.1} & a_n = \frac{2}{n+1} & ; & G = 0 \\ \begin{vmatrix} \frac{2}{n+1} - 0 \\ \end{vmatrix} < \epsilon \\ a_n - 0 > 0 \ \forall \ n, \text{ also} \\ \frac{2}{n+1} < \epsilon & \end{vmatrix}^{-1} \\ \frac{n+1}{2} > \frac{1}{\epsilon} & | \cdot 2 \\ n+1 > \frac{2}{\epsilon} & | -1 \\ n > \frac{2}{\epsilon} - 1 \end{vmatrix}$$

Die Grenzwertbedingung ist für alle $n > \frac{2}{\epsilon} - 1$ erfüllt, also ist G = 0 der Grenzwert von a_n .

1.2.2
$$a_n = 1 - \frac{1}{2n+1}$$
; $G = 1$

$$\begin{vmatrix} 1 - \frac{1}{2n+1} - 1 \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \text{Der Nenner ist}$$

$$\begin{vmatrix} \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \text{Der Nenner ist}$$

$$\begin{vmatrix} \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \begin{vmatrix} -1 \\ \frac{-1}{2n+1} \\ \frac{-1}{2n+1} \end{vmatrix} < \epsilon \quad \end{vmatrix}$$

erfüllt, also ist G=1 der

Grenzwert von a_n .

$$|a|_{-1}: G=1|$$

$$|a|_{-1}: G=2|$$

$$|a|_$$

1.3 Zeige mit Hilfe des Satzes über Monotonie und Beschränktheit, dass die Folge $a_n = \frac{1}{n^2} + 1$, $n \in \mathbb{N}$ einen Grenzwert besitzt.

Wenn a_n ist streng monoton fallend, muss gelten:

$$\frac{1}{(n+1)^2} + 1 < \frac{1}{n^2} + 1 \quad | \quad -1$$

$$\frac{1}{(n+1)^2} < \frac{1}{n^2} \quad | \quad -1$$

$$\frac{1}{(n+1)^2} < \frac{1}{n^2} \quad | \quad -1$$

$$1 > 0 \quad \text{wahre Aussage, also ist auch die ursprüngliche Aussage wahr, also ist die Folge monoton fallend.}$$

 a_n ist nach oben beschränkt, weil $a_1 = \frac{1}{1^2} + 1 = 2$ der größte mögliche Wert ist. Alle folgenden Werte sind kleiner, weil die Folge streng monoton fallend ist.

 a_n ist nach unten beschränkt, weil $a_n > 0 \ \forall n$ (Das muss nicht extra bewiesen werden).

optionaler Beweis:
$$\frac{1}{n^2} + 1 > 0 \Leftrightarrow \frac{1}{n^2} > -1 \Leftrightarrow 1 > -1 \cdot n^2$$
 wahr, weil $n \in \mathbb{N}$.

Also ist a_n beschränkt und monoton fallend und muss somit einen Grenzwert besitzen.

1.4. Berechne die (ggf. uneigentlichen) Grenzwerte der folgenden Folgen mit Hilfe der Grenzwertsätze.

$$\frac{1.4.1}{\lim_{n \to \infty} a_n} a_n = n^2 - 500n + 42$$

$$\lim_{n \to \infty} \left(n^2 \left(1 - \frac{500}{n} + \frac{42}{n^2} \right) \right)$$

$$= \left(\lim_{n \to \infty} n^2 \right) \cdot (1 - 0 + 0) = \infty$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \left(\lim_{n \to \infty} n^2 \right) \cdot (0 + 1) = \infty$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty} \left(n^2 \left(\frac{1}{n^3} + 1 \right) \right)$$

$$= \lim_{n \to \infty}$$

Mathematik LK M1, 1. Kursarbeit – Folgen und Reihen – Lösung

27.09.2013

1.5 Beurteile den Wahrheitsgehalt der folgenden Aussagen. (Schreibe "wahr" oder "unwahr" hinter die entsprechende Aussage).

Aussage	wahr /unwahr
Wenn die Folge (a_n) den Grenzwert G hat, kann sie nicht den Grenzwert L haben, wenn $G \neq L$.	wahr
Jede beschränkte Folge hat einen Grenzwert, falls es ein $\epsilon \in \mathbb{R}$ mit $\epsilon > 0$ gibt, so dass für alle $n > n_0 \in \mathbb{N}$ gilt: $ a_n < \epsilon$	unwahr
Wenn die Folge (a_n) mindestens eine konvergente Teilfolge besitzt, so ist (a_n) ebenfalls konvergent.	unwahr
Wenn die Folge (a_n) streng monoton steigend und nach oben beschränkt ist, so besitzt sie einen Grenzwert.	wahr
Jede Folge (a_n) , die monoton fallend und nach oben beschränkt ist, divergiert.	unwahr

1.6. Prüfe jeweils, ob es sich bei den folgenden Folgen um eine arithmetische Folge oder eine geometrische Folge handelt, oder ob die Folge weder geometrisch noch arithmetisch ist.

1.6.1
$$a_n = \frac{2n+2}{4}, n \in \mathbb{N}_0$$

Vermutung:
$$a_n$$
 ist eine arithmetische Folge. Bedingung für arithmetische Folge:
$$a_{n+1}-a_n=konstant \qquad \frac{2(n+1)+2}{4}-\frac{2n+2}{4}=\frac{(n+1)+1}{2}-\frac{n+1}{2}=\frac{n+1+1-(n+1)}{2}=\frac{2-1}{2}=\frac{1}{2}$$

Also ist a_n ist eine arithmetische Folge.

1.6.2
$$a_n = 1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, -\frac{1}{243}, \dots$$
 für $n \in \mathbb{N}_0$

 $a_n = \left(-\frac{1}{3}\right)^n$ Vermutung: a_n ist eine geometrische Folge. Bedingung für geometrische Folge:

$$\frac{a_{n+1}}{a_n} = konstant \qquad \frac{\left(-\frac{1}{3}\right)^{n+1}}{\left(-\frac{1}{3}\right)^n} = \left(-\frac{1}{3}\right)^1 = -\frac{1}{3} \quad \text{Also ist} \quad a_n \quad \text{ist eine geometrische Folge.}$$

Aufgabe 2: Beweis durch vollständige Induktion

2. Beweise mit Hilfe der vollständigen Induktion die folgenden Behauptungen:

2.1
$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

Induktionsanfang: linke Seite: $\sum_{k=0}^{0} k = 0$ rechte Seite: $\frac{0 \cdot (0+1)}{2} = 0$ o.k.

2.2
$$\sum_{k=0}^{n} (k(k+1)) = \frac{1}{3} n(n+1)(n+2)$$

Induktionsanfang: k = 0

linke Seite: $\sum_{i=0}^{0} (i(i+1)) = 0 \cdot (0+1) = 0$ rechte Seite: $\frac{1}{3} \cdot 0 \cdot (0+1) \cdot (0+2) = 0$ o.k.

Induktionsschritt:

$$\sum_{k=0}^{n+1} \big(\, k \, \big(\, k \, + \, 1 \, \big) \big) = \big(n \, + \, 1 \, \big) \big(\, n \, + \, 1 \, + \, 1 \, \big) + \sum_{k=0}^{n} \big(\, k \, \big(\, k \, + \, 1 \, \big) \big) \quad \text{Jetzt Behauptung einsetzen:}$$

$$= (n+1)(n+2) + \frac{1}{3}n(n+1)(n+2) \quad \text{(n+1) und (n+2) ausklammern}$$

$$= (n+1)(n+2) \cdot \left(1 + \frac{1}{3}n\right) \quad \frac{1}{3} \quad \text{ausklammern}$$

$$= \frac{1}{3}(n+1)(n+2) \cdot (3+n) \quad \text{q.e.d.}$$

2.3
$$\prod_{k=1}^{n} 4^{k} = 2^{n(n+1)}$$

Induktionsanfang: k=1 linke Seite: $\prod_{k=1}^{1} 4^k = 4^1 = 4$ rechte Seite: $2^{1(1+1)} = 2^2 = 4$ o.k.

Induktionsschritt:

$$\prod_{k=1}^{n+1} 4^k = 4^{n+1} \cdot \prod_{k=1}^{n} 4^k$$
 Behauptung einsetzen:

$$= 4^{n+1} \cdot 2^{n(n+1)} = \left(2^2\right)^{n+1} \cdot 2^{n(n+1)} = 2^{2(n+1)} \cdot 2^{n(n+1)} = 2^{2(n+1)+n(n+1)} = 2^{(n+1)(n+2)} \quad \text{q.e.d.}$$