Aufgabe 1: Gegeben ist ein Kreis K mit dem Mittelpunkt M und dem Radius r.

a) M(0|0), r=6. Entscheide mit Hilfe einer Rechnung, ob der Punkt $P(\sqrt{18}|\sqrt{18})$ auf dem Kreisbogen des Kreises K liegt.

Die Gleichung $r^2 = x^2 + y^2$ muss erfüllt sein. Einsetzen: $6^2 = \sqrt{18}^2 + \sqrt{18}^2 \Leftrightarrow 36 = 18 + 18 \Rightarrow wahr$

A: Der Punkt P liegt auf dem Kreisbogen.

b) M(4|2), r=4. Der Punkt $Q(x_1|6)$ liegt auf dem Kreisbogen des Kreises K. Berechne die möglichen x-Koordinaten des Punktes Q.

Es gilt
$$r^2 = (x - x_0)^2 + (y - y_0)^2$$
 Auflösen nach x:
$$r^2 = (x - x_0)^2 + (y - y_0)^2 \quad | \quad -(y - y_0)^2 \\ \Leftrightarrow r^2 - (y - y_0)^2 = (x - x_0)^2 \quad | \quad \sqrt{} \\ \Leftrightarrow \pm \sqrt{r^2 - (y - y_0)^2} = x_{1/2} - x_0 \quad | \quad + x_0 \\ \Leftrightarrow x_0 \pm \sqrt{r^2 - (y - y_0)^2} = x_{1/2} \\ \Rightarrow x_{1/2} = \Leftrightarrow x_0 + \sqrt{r^2 - (y - y_0)^2} = 4 + \sqrt{4^2 - (6 - 2)^2} = 4 \pm \sqrt{0} = 4$$

A: Q hat die Koordinaten (4|6).

Aufgabe 2: Gegeben ist ein Kreis K mit der Fläche $A_K = 81 \pi cm^2$.

a) Berechne den Durchmesser des Halbkreises, dessen Fläche genauso groß ist, wie die Fläche des Kreises K.

Halbkreis gehört zum Kreis mit der Fläche $A_H = 2 A_K = 162 \, \pi \, cm^2$

$$A_{H} = \pi r_{H}^{2} \Rightarrow r_{H} = \sqrt{\frac{A_{H}}{\pi}} = \sqrt{\frac{2 \cdot 81 \pi cm}{\pi}} = 9\sqrt{2} cm \Rightarrow d = 18\sqrt{2} cm \approx 25,46 cm$$

b) Berechne den Flächeninhalt eines Quadrats, das den gleichen Umfang wie der Kreis K hat.

$$A = \pi r^2 \Rightarrow r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{81 \pi cm}{\pi}} = 9 cm$$
 $U = 2 \pi r = 2 \pi \cdot 9 cm = 18 \pi cm \approx 56,55 cm$

Kantenlänge Quadrat $a = \frac{U}{4} = \frac{9}{2} \pi cm \approx 14,14 cm$

Flächeninhalt Quadrat $A_Q = a^2 = \frac{81}{4} \pi^2 cm^2 \approx 199,86 cm^2$

c) Berechne die Länge der Seitenkante eines gleichseitigen Dreiecks, dessen Höhe so groß wie der Radius des Kreises K ist.

Im gleichseitigen Dreieck mit der Kantenlänge a und der Höhe h gilt: $h^2 + \left(\frac{1}{2}a\right)^2 = a^2$

$$\Leftrightarrow h^2 = a^2 - \frac{1}{4} a^2 \Leftrightarrow h^2 = \frac{3}{4} a^2 \Leftrightarrow a^2 = \frac{4}{3} h^2 \Rightarrow a = \frac{2}{\sqrt{3}} h = \frac{2}{\sqrt{3}} r = \frac{2}{\sqrt{3}} 9 cm \approx 10,39 cm$$

d) Berechne die Höhe eines regelmäßigen Sechsecks (Höhe = Abstand zweier gegenüberliegender Seiten), dessen Fläche gleich der Fläche des Kreises K ist.

Sechseck besteht aus sechs gleichseitigen Dreiecken der Fläche:

$$A_D = \frac{A_K}{6} = \frac{81}{6} \pi cm^2 = \frac{27}{2} \pi cm^2$$

Seitenkante des Dreiecks:
$$A_D = \frac{\sqrt{3}}{4} a^2 \Leftrightarrow a^2 = \frac{4}{\sqrt{3}} A_D \Rightarrow a = 2 \cdot \sqrt{\frac{A}{\sqrt{3}}} = 2 \cdot \sqrt{\frac{27 \pi \ cm^2}{2 \cdot \sqrt{3}}} \approx 9,90 \ cm$$

Höhe des Dreiecks:
$$h_D^2 = \frac{3}{4}a^2 \Rightarrow h_D = \frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{2}9,90 \ cm \approx 8,57 \ cm$$

Höhe des Sechsecks: $h=2h_D\approx 17,14cm$

<u>Aufgabe 3:</u> Gegeben ist ein Kreisbogenstück $b=8\,cm$ eines Kreises mit der Fläche $A_K=225\,\pi\,cm^2$.

a) Gib den zu dem Kreisbogenstück b zugehörigen Winkel x im Bogenmaß an.

$$A = \pi r^2 \Rightarrow r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{225 \pi cm}{\pi}} = 15 cm$$

$$x = \frac{b}{r} = \frac{8 cm}{15 cm} = \frac{8}{15} = 0.5\overline{3}$$

b) Berechne die Kreisteilfläche A_T, die zu dem Kreisbogenstück b gehört.

$$A = \frac{1}{2}br = \frac{1}{2} \cdot 8cm \cdot 15cm = 60cm^2$$

<u>Aufgabe 4:</u> Die olympischen Spiele finden 2016 in Rio de Janeiro statt. Aus mathematisch/ästhetischen Gründen entscheidet man sich, die Stadien kreisrund zu bauen (nicht wirklich).

Entsprechend sind auch die Laufbahnen kreisförmig.

Eine Laufbahn ist 0,9 m breit und es gibt neun Laufbahnen.

Das Stadion soll so groß sein, dass die mittlere Laufbahn genau 400 m lang ist (gemessen in der Bahnmitte).

a) Berechne den Durchmesser des Kreises für die mittlere Laufbahn.

$$U_m = \pi d_m \Leftrightarrow d_m = \frac{U}{\pi} = \frac{400 m}{\pi} = \frac{400 m}{\pi} \approx 127,32 m$$

A: Der Kreis der Mittelbahn hat einen Durchmesser von ca. 127 m.

b) Berechne, wie viel Meter der Läufer auf der inneren Bahn beim 400m-Lauf hinter dem Läufer auf der mittleren Bahn starten muss.

Der Radius der inneren Bahn ist um vier Bahnbreiten kleiner als der Radius der mittleren Bahn

$$r_i = r_m - 4.0.9 m = \frac{200 m}{\pi} - 3.6 m \approx 60.06 m$$

$$U_i = 2 \pi r_i = 2 \pi \left(\frac{200 m}{\pi} - 3.6 m \right) = 400 m - 7.2 \pi m \approx 400 m - 22.62 m$$

A: Der Läufer auf der inneren Bahn muss 22,62 m hinter dem Läufer der mittleren Bahn starten.

c) Der Läufer auf der inneren Bahn muss also einen Teil seines Kreises zusätzlich laufen. Berechne den Winkel dieses Kreisteils.

Die Länge des zusätzlich zu laufenden Bogenstücks beträgt b = 22.62 m.

$$x = \frac{b}{r_i} = \frac{22,62 \, m}{\frac{200 \, m}{\pi} - 3,6 \, m} = 0.38$$
 $\alpha = x \cdot \frac{180 \, \circ}{\pi} = 21,57 \, \circ$

A: Der Läufer auf der inneren Bahn muss einen Kreisbogen von 21,57° zusätzlich laufen.