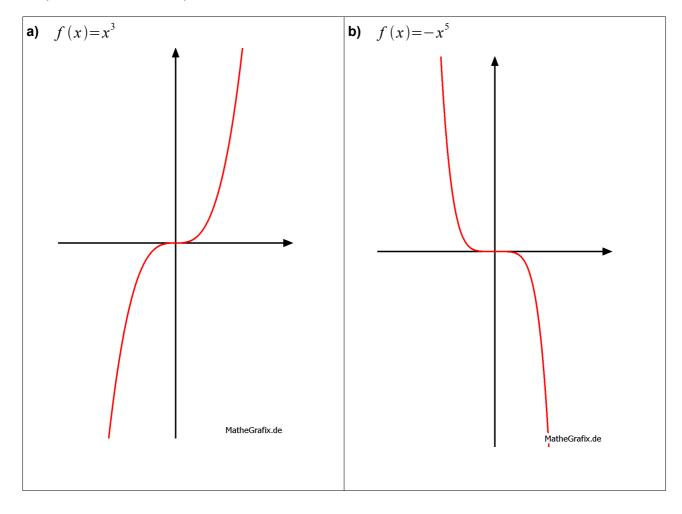
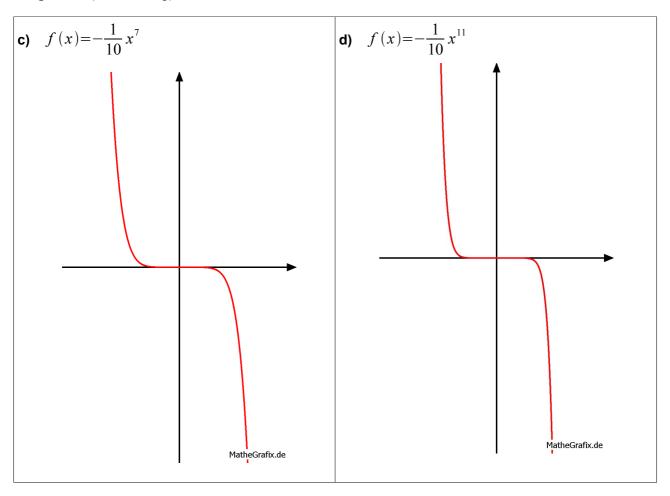
<u>Aufgabe 1:</u> Vervollständige die folgenden Potenzrechengesetze. Falls es kein passendes Gesetz gibt, schreibe "kein Gesetz".

a)
$$x^a: y^b \Rightarrow kein Gesetz$$
 b) $x^a \cdot x^b = x^{a+b}$ c) $y^a: x^a = \left(\frac{x}{y}\right)^a$ d) $p^x - q^x \Rightarrow kein Gesetz$

Aufgabe 2: Vereinfache die folgenden Terme mit Hilfe der Potenzrechengesetze so weit wie möglich.


a)
$$(ab^3):(ab)^3 = \frac{(ab^3)}{(ab)^3} = \frac{ab^3}{a^3b^3} = \frac{1}{a^2}$$
 b) $(d+c)^2 \cdot (-d+c)^2 = ((c+d)^2 \cdot (c-d))^2 = (c^2 - d^2)^2$

c)
$$\left(\frac{6x^2}{9y^2}\right)^3 \cdot \left(\frac{3x^3}{36y^5}\right)^2 = \left(\frac{2x^2}{3y^2}\right)^3 \cdot \left(\frac{1x^3}{12y^5}\right)^2 = \frac{8x^6}{27y^6} \cdot \frac{x^6}{144y^{10}} = \frac{x^{12}}{27 \cdot 18y^{16}} = \frac{x^{12}}{486y^{16}}$$


Bemerkung c): Es sollte eigentlich ein : zwischen den Klammern stehen. Deshalb kürzt sich hier nichts.

d)
$$\frac{x^{a-1}y^{b-1}z^{c-1}}{x^{a-2}y^{b-2}z^{c}(x^{3}y^{3}z^{3})} = x^{(a-1)-(a-2)-3} \cdot y^{(b-1)-(b-2)-3} \cdot z^{(c-1)-c-3} = x^{-1+2-3} \cdot y^{-1+2-3} \cdot z^{-1-3} = x^{-2} \cdot y^{-2} \cdot z^{-4}$$

<u>Aufgabe 3:</u> Skizziere die folgenden Funktionen in die Koordinatensysteme auf diesem Blatt. Berechne keine Funktionswerte. Wichtig ist der prinzipielle Verlauf und die charakteristischen Merkmale der Graphen, so dass die Graphen unterscheidbar sind.

Aufgabe 3: (Fortsetzung)

<u>Aufgabe 4:</u> Gegeben ist die Potenzfunktion $f(x)=3x^4$. Weiterhin seien $P(5|y_1)$ und $Q\left(x_2 \middle| \frac{1}{27}\right)$ Punkte auf dem Graphen von f.

Berechne die fehlenden Koordinaten y_1 von P und x_2 von Q.

$$f(4)=3.5^4=3.625=1875$$
 $P(5|1875)$

$$\frac{1}{27} = 3x_2^4 \Leftrightarrow \frac{1}{81} = x^4 \Leftrightarrow \sqrt[4]{\frac{1}{81}} \Leftrightarrow \pm \frac{1}{3} = x_2 \qquad \mathcal{Q}\left(\frac{1}{3} \left| \frac{1}{27} \right) \text{ oder } \mathcal{Q}\left(-\frac{1}{3} \left| \frac{1}{27} \right)\right)$$

Aufgabe 5: Bestimme die Lösungsmenge der folgenden Gleichungen.

a)
$$(1-3x)^4 = 625 \mid \sqrt[4]{}$$

 $\Leftrightarrow 1-3x_{1/2} = \pm 5 \mid -1$
 $\Rightarrow -3x_1 = -6 \Leftrightarrow x_1 = 2$
 $-3x_2 = 4 \Leftrightarrow x_2 = -\frac{4}{3}$

$$L = \left\{ -\frac{4}{3} \middle| 2 \right\}$$

b)
$$\sqrt[6]{x} \sqrt[3]{x} \sqrt{x} = 8$$

 $\Leftrightarrow x^{\frac{1}{6}} x^{\frac{1}{3}} x^{\frac{1}{2}} = 8$
 $\Leftrightarrow x^{\frac{1}{6} + \frac{1}{3} + \frac{1}{2}} = 8$
 $\Leftrightarrow x^{1} = 8$

$$L = \{8\}$$

 $L = \{7\}$

c)
$$\sqrt[5]{x+2} = (8x)^{\frac{1}{10}} \mid ^{10}$$

 $\Rightarrow (x+2)^2 = 8x \mid T$
 $\Leftrightarrow x^2 + 4x + 4 = 8x \mid -8x$
 $\Leftrightarrow x^2 - 4x + 4 = 8x \mid T$
 $\Leftrightarrow (x-2)^2 = 0 \mid \sqrt{}$
 $\Leftrightarrow x-2 = 0 \mid +2$
 $\Leftrightarrow x-2 = 0 \mid +2$

Probe:
$$\sqrt[5]{4} = 16^{\frac{1}{10}} \mid T$$

 $\Leftrightarrow 2^{\frac{2}{5}} = 2^{\frac{4 \cdot 1}{10}} \mid T$
 $\Leftrightarrow 2^{\frac{2}{5}} = 2^{\frac{2}{5}} \quad wahr$

$$L=\{2\}$$

e)
$$34 - 7\left(\frac{4x - 1}{x - 6}\right)^{\frac{1}{3}} = 13 \quad | \quad -23$$

 $\Leftrightarrow -7\left(\frac{4x - 1}{x - 6}\right)^{\frac{1}{3}} = -21 \quad | \quad :(-7)$
 $\Leftrightarrow \left(\frac{4x - 1}{x - 6}\right)^{\frac{1}{3}} = 3 \quad | \quad ^{3}$
 $\Leftrightarrow \frac{4x - 1}{x - 6} = 27 \quad | \quad \cdot(x - 6)$

d)
$$\sqrt{x^{12}} + 126 = 2(\sqrt[5]{x^5})^6$$

 $\Leftrightarrow x^6 + 126 = 2x^6 | -x^6$
 $\Leftrightarrow 126 = x^6 | \sqrt[6]{x^5}$
 $\Leftrightarrow \pm \sqrt[6]{126} = x$

$$L = \left\{ -\sqrt[6]{126} \right| \sqrt[6]{126} \right\}$$

$$\Leftrightarrow 4x - 1 = 27 \cdot (x - 6) | T$$

$$\Leftrightarrow 4x - 1 = 27x - 162 | -4x + 162$$

$$\Leftrightarrow 161 = 23x | :23$$

$$\Leftrightarrow 7 = x | :23$$