Aufgabe 1:

a) Bestimme
$$\lim_{x \to \infty} \left(\frac{a+5}{a+6} \right) = \lim_{x \to \infty} \left(\frac{1+\frac{5}{a}}{1+\frac{6}{a}} \right) = \frac{1+0}{1+0} = 1$$

b) Berechne $(2x^2+4x+2):(x+1)$

$$\frac{(2x^{2}+4x+2):(x+1)=2x+2}{2x^{2}+2x}$$

$$\frac{2x+2}{2x+2}$$
0

Aufgabe 2:

Gegeben ist $f(x)=4x^2$. Es sei $x_0=2$.

a) Berechne den Differenzenquotienten von f(x) zwischen den Stellen $x_1=1$ und $x_2=4$.

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{4 \cdot 4^2 - 4 \cdot 1^2}{4 - 1} = \frac{60}{3} = 20$$

b) Berechne $f'(x_0)$ mit der "x-Methode".

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{4x^2 - (4 \cdot 2^2)}{x - 2} = \lim_{x \to x_0} \frac{4x^2 - 16}{x - 2}$$

Neberechnung Polynomdivision:

$$\begin{array}{r}
(4x^2 - 16):(x-2) = 4x + 8 \\
4x^2 - 8x \\
\hline
8x - 16 \\
8x - 16 \\
\hline
0$$

Also
$$f'(x_0) = \lim_{x \to x_0} 4x + 8 = 4 \cdot 2 + 8 = 16$$

c) Berechne $f'(x_0)$ mit der "h-Methode".

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{4 \cdot (2 + h)^2 - (4 \cdot 2^2)}{h}$$
$$= \lim_{h \to 0} \frac{4 \cdot (4 + 4h + h^2) - 16}{h} = \lim_{h \to 0} \frac{16 + 16h + 4h^2 - 16}{h} = \lim_{h \to 0} 16 + 4h = 16 + 0 = 16$$

d) Stelle die Gleichung der Tangenten von f(x) am Punkt $P_0(x_0|f(x_0))$ auf.

Die Steigung der Tangenten durch $P_0(x_0|f(x_0))$ ist gleich dem Differentialquotienten an der Stelle x_0 . Den haben wir schon in Aufgabe a) und b) berechnet.

$$m_t = f'(2) = 16$$

$$f(x_0)=4\cdot 2^2=16$$
, also ist $P_0(3|16)$

Einsetzen von P₀ und m_t in die lineare Funktionsgleichung f(x)=mx+n

$$16=16 \cdot 2 + n \mid -36$$

 $\Leftrightarrow -20=n$

Die Funktionsgleichung lautet also f(x)=16x-20

Aufgabe 3:

Gegeben sind die drei Funktionen f, g und h.

f(x) ist ein Polynom 1. Grades, g(x) ein Polynom 2. Grades und h(x) ein Polynom 3. Grades.

Die Punkte $P_1(2|2)$ und $P_2(5|-4)$ liegen auf dem Graphen von f(x).

Die Punkte $P_3(-3|-8)$, $P_4(3|4)$ und $P_5(7|-8)$ liegen auf dem Graphen von g(x).

h(x) hat die Funktionsgleichung $h(x) = -x^3 + 7x^2 - 7x - 15$. Eine Nullstelle liegt bei $x_1 = 5$.

Aufgaben für f(x):

a) Zeige mit einer Rechnung, dass für f die Funktionsgleichung f(x) = -2x + 6 ist.

Entweder beide Punkte einsetzen und 2er-LGS lösen oder

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{-4 - 2}{5 - 2} = \frac{-6}{3} = -2$$
 und

Einsetzen von P₁ und m in die lineare Funktionsgleichung f(x)=mx+n

$$2 = -2 \cdot 2 + n + 4$$

$$\Leftrightarrow 6 = n$$

Also
$$f(x)=-2x+6$$

b) Berechne alle Nullstellen von f(x).

Es gilt $f(x_n)=0$, also gleich null setzen

$$-2x_n+6=0 | -6$$

$$\Leftrightarrow -2x_n=-6 | :2$$

$$\Leftrightarrow x_n=3$$

Aufgaben für g(x):

c) Zeige mit einer Rechnung, dass für g die Funktionsgleichung $g(x) = 0.5x^2 - 2x - 2.5$ ist.

$P_3(-3|-8)$; $P_4(3|4)$; $P_5(7|-8)$

Einsetzen der drei bekannten Punkte in die allgemeine Funktionsgleichung $g(x) = ax^2 + bx + c$

- 1. $-8 = a \cdot (-3)^2 + b \cdot (-3) + c$
- II. $4=a\cdot(3)^2+b\cdot(3)+c$
- III. $-8 = a \cdot (7)^2 + b \cdot (7) + c$
- 1. -8=9a-3b+c | 1. II.
- II. 4=9a+3b+c
- III. -8 = 49 a + 7 b + c | III. II.
- la. -12 = -6b |: (-6) $\Leftrightarrow b = 2$
- IIIa. -12=40 a+4 b

Setze b=2 in IIIa. ein:

IIIa.
$$-12=40 \ a+4\cdot(2)$$
 | -8
 $\Leftrightarrow -20=40a$ | :40
 $\Leftrightarrow -\mathbf{0.5} = a$

Setze a=-0.5 und b=2 in I. ein:

1.
$$-8 = 9 \cdot (-0.5) - 3 \cdot 2 + c$$

 $\Leftrightarrow -8 = -10.5 + c$ | +10.5
 $\Leftrightarrow 2.5 = c$

Eingesetzt in die Funktionsgleichung: $g(x) = -0.5x^2 + 2x + 2.5$

d) Berechne alle Nullstellen von g(x).

Es gilt $g(x_n)=0$, also gleich null setzen

$$-0.5 x_n^2 + 2 x_n + 2.5 = 0 \mid \cdot (-2)$$

 $\Leftrightarrow x_n^2 - 4 x_n - 5 = 0$ Anwenden der p-q-Formel
 $x_{1/2} = 2 \pm \sqrt{2^2 + 5} = 2 \pm 3$ $\Rightarrow x_1 = -1, x_2 = 5$

Die Nullstellen liegen bei $x_1 = -1$ und $x_2 = 5$.

e) Berechne die Schnittpunkte von f(x) und g(x).

Für den Schnittpunkt $S(x_s|y_s)$ gilt: $f(x_s)=g(x_s)$, also muss man die Funktionen gleich setzen

$$-2x_s+6=-0.5x_s^2+2x_s+2.5 +0.5x_s^2-2x_s-2.5$$

$$\Leftrightarrow 0.5 x_s^2 - 4 x_s + 3.5 = 0 \mid \cdot 2$$

$$\Leftrightarrow x_s^2 - 8x_s + 7 = 0$$
 Anwenden der p-q-Formel

$$x_{1/2} = 4 \pm \sqrt{4^2 - 7} = 4 \pm \sqrt{16 - 7} = 4 \pm \sqrt{9} = 4 \pm 3$$
 $\Rightarrow x_1 = 7$; $x_2 = 1$

Berechnung der y-Koordinaten der Schnittpunkte durch Einsetzen der x-Koordinaten in eine der beiden Funktioen.

$$y_1 = g(x_1) = -2.7 + 6 = -14 + 6 = -8$$
 $y_2 = g(x_2) = -2.1 + 6 = -2.46 = 4$

Die Schnittpunkte sind $S_1(1|4)$ und $S_2(7|-8)$.

f) Berechne die Ableitung von g(x) an der Stelle $x_0=2$, also g'(2). Benutze eine Methode deiner Wahl.

$$g(x) = -0.5x^2 + 2x + 2.5$$

1. Möglichkeit: x-Methode

$$g'(3) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{-0.5x^2 + 2x + 2.5 - (-0.5 \cdot 2^2 + 2 \cdot 2 + 2.5)}{x - 2} = \lim_{x \to 2} \frac{-0.5x^2 + 2x - 2}{x - 2}$$

Nebenrechnung Polynomdivision:

$$(-0.5x^{2}+2x-2):(x-2)=0.5x+1$$

$$0.5x^{2}+1x$$

$$x-2$$

$$x-2$$

$$x-2$$

$$0$$

Also
$$g'(2) = \lim_{x \to 2} -0.5x + 1 = -0.5 \cdot 2 + 1 = -1 + 1 = 0$$

1. Möglichkeit: h-Methode

$$g'(2) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = \lim_{h \to 0} \frac{-0.5 \cdot (2 + h)^2 + 2 \cdot (2 + h) + 2.5 - (-0.5 \cdot 2^2 + 2 \cdot 2 + 2.5)}{h}$$

$$= \lim_{h \to 0} \frac{-0.5 \cdot (4 + 4h + h^2) + 4 + 2h - 2}{h} = \lim_{h \to 0} \frac{-2 - 2h - 0.5 \cdot h^2 + 2 + 2h}{h} = \lim_{h \to 0} \frac{0.5 \cdot h^2}{h}$$

$$= \lim_{h \to 0} 0.5 \cdot h = 0.5 \cdot 0 = \mathbf{0}$$

g) Berechne die übrigen Nullstellen von h(x). $h(x) = -x^3 + 7x^2 - 7x - 15$; $x_1 = 5$

Die Nullstellen sind die Lösung der Gleichung: $-x_n^3 + 7x_n^2 - 7x_n - 15 = 0$ Berechne:

$$(-x^3+7x^2-7x-15):(x-5)=-x^2+2x+3$$

 $-x^3+5x^2$

$$\begin{array}{r}
2x^2 - 7x - 15 \\
2x^2 - 10x \\
\hline
3x - 15 \\
3x - 15
\end{array}$$

Also kann man h(x) auch in der Form $h(x)=(x-5)\cdot(-x^2+2x+3)$ schreiben.

 $(x_n-5)\cdot(-x_n^2+2x_n+3)=0$ Betrachte nur noch die zweite Klammer.

$$-x_n^2 + 2x_n + 3 = 0 \quad | \quad \cdot (-1)$$

dlrarrow $x_n^2 - 2x_n - 3 = 0$

Anwenden der p-q-Forme $x_{2/3} = 1 \pm \sqrt{1+3} = 1 \pm \sqrt{4} = 1 \pm 2$ $\Rightarrow x_2 = -1$; $x_3 = +3$

Die weiteren Nullstellen liegen bei $x_2=-1$ und $x_3=3$.