Aufgabe 1:

a) Bestimme
$$\lim_{x \to \infty} \left(\frac{x+4}{x+3} \right) = \lim_{x \to \infty} \left(\frac{1+\frac{4}{x}}{1+\frac{3}{x}} \right) = \frac{1+0}{1+0} = 1$$

b) Berechne $(6x^2+7x+2):(3x+2)$

$$(6x^{2}+7x+2):(3x+2)=2x+1$$

$$6x^{2}+4x$$

$$3x+2$$

$$3x+2$$

$$0$$

Aufgabe 2:

Gegeben ist $f(x)=2x^2$. Es sei $x_0=3$.

a) Berechne den Differenzenquotienten von f(x) zwischen den Stellen $x_1=1$ und $x_2=5$.

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{2 \cdot 5^2 - 2 \cdot 1^2}{5 - 1} = \frac{50 - 2}{4} = \frac{48}{2} = 12$$

b) Berechne $f'(x_0)$ mit der "x-Methode".

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{2x^2 - (2 \cdot 3^2)}{x - 3} = \lim_{x \to x_0} \frac{2x^2 - 18}{x - 3}$$

Neberechnung Polynomdivision:

$$(2x^{2}-18):(x-3)=2x+6$$

$$2x^{2}-6x$$

$$6x-18$$

$$6x-18$$

$$0$$

Also
$$f'(x_0) = \lim_{x \to x_0} 2x + 6 = 2 \cdot 3 + 6 = 12$$

c) Berechne $f'(x_0)$ mit der "h-Methode".

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{2 \cdot (3 + h)^2 - (2 \cdot 3^2)}{h}$$
$$= \lim_{h \to 0} \frac{2 \cdot (9 + 6h + h^2) - 18}{h} = \lim_{h \to 0} \frac{18 + 12h + 2h^2 - 18}{h} = \lim_{h \to 0} 12 + 2h = 12 + 0 = 12$$

d) Stelle die Gleichung der Tangenten von f(x) am Punkt $P_0(x_0|f(x_0))$ auf.

Die Steigung der Tangenten durch $P_0(x_0|f(x_0))$ ist gleich dem Differentialquotienten an der Stelle x_0 . Den haben wir schon in Aufgabe a) und b) berechnet.

$$m_t = f'(3) = 12$$

$$f(x_0) = 2 \cdot 3^2 = 18$$
, also ist $P_0(3|18)$

Einsetzen von P₀ und m_t in die lineare Funktionsgleichung f(x)=mx+n

$$18 = 12 \cdot 3 + n \mid -36$$

 $\Leftrightarrow -18 = n$

Die Funktionsgleichung lautet also f(x)=12x-18

Aufgabe 3:

Gegeben sind die drei Funktionen f, g und h.

f(x) ist ein Polynom 1. Grades, g(x) ein Polynom 2. Grades und h(x) ein Polynom 3. Grades.

Die Punkte $P_1(1|-4)$ und $P_2(4|2)$ liegen auf dem Graphen von f(x).

Die Punkte $P_3(-3|8)$, $P_4(3|-4)$ und $P_5(7|8)$ liegen auf dem Graphen von g(x).

h(x) hat die Funktionsgleichung $h(x) = x^3 - 7x^2 + 7x + 15$. Eine Nullstelle liegt bei $x_1 = 3$.

Aufgaben für f(x):

a) Zeige mit einer Rechnung, dass für f die Funktionsgleichung f(x)=2x-6 ist.

Entweder beide Punkte einsetzen und 2er-LGS lösen oder

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{2 - (-4)}{4 - 1} = \frac{6}{3} = 2$$
 und

Einsetzen von P₁ und m in die lineare Funktionsgleichung f(x)=mx+n

$$-4=2\cdot 1+n \mid -2$$

$$\Leftrightarrow -6=n$$

Also
$$f(x)=2x-6$$

b) Berechne alle Nullstellen von f(x).

Es gilt $f(x_n)=0$, also gleich null setzen

$$2x_n - 6 = 0 | +6$$

$$\Leftrightarrow 2x_n = 6 | :2$$

$$\Leftrightarrow x_n = 3$$

Aufgaben für g(x):

c) Zeige mit einer Rechnung, dass für g die Funktionsgleichung $g(x) = 0.5x^2 - 2x - 2.5$ ist.

Einsetzen der drei bekannten Punkte in die allgemeine Funktionsgleichung $g(x) = ax^2 + bx + c$

- 1. $8 = a \cdot (-3)^2 + b \cdot (-3) + c$
- II. $-4=a\cdot(3)^2+b\cdot(3)+c$
- III. $8 = a \cdot (7)^2 + b \cdot (7) + c$
- 1. 8=9a-3b+c | 1. II.
- II. -4=9a+3b+c
- III. 8=49a+7b+c | III. II.
- la. 12=-6b |: (-6) $\Leftrightarrow b=-2$
- IIIa. 12=40 a+4 b

Setze b=-2 in IIIa. ein:

IIIa.
$$12=40 a+4 \cdot (-2)$$
 | +8
 $\Leftrightarrow 20=40a$ | :40
 $\Leftrightarrow \mathbf{0.5} = a$

Setze a=0.5 und b=-2 in I. ein:

1.
$$8=9 \cdot 0.5 - 3 \cdot (-2) + c$$

 $\Leftrightarrow 8=6.5 + c$ | -6.5
 $\Leftrightarrow 2.5 = c$

Eingesetzt in die Funktionsgleichung: $g(x)=0.5x^2-2x-2.5$

d) Berechne alle Nullstellen von g(x).

Es gilt $g(x_n)=0$, also gleich null setzen

$$0.5 x_n^2 - 2 x_n - 2.5 = 0$$
 | $\cdot 2$
 $\Leftrightarrow x_n^2 - 4 x_n - 5 = 0$ Anwenden der p-q-Formel
 $x_{1/2} = 2 \pm \sqrt{2^2 + 5} = 2 \pm 3$ $\Rightarrow x_1 = -1, x_2 = 5$

Die Nullstellen liegen bei $x_1 = -1$ und $x_2 = 5$.

e) Berechne die Schnittpunkte von f(x) und g(x).

Für den Schnittpunkt $S(x_s|y_s)$ gilt: $f(x_s)=g(x_s)$, also muss man die Funktionen gleich setzen

$$2x_s-6=0.5x_s^2-2x_s-2.5$$
 | $-0.5x_s^2+2x_s+2.5$

$$\Leftrightarrow -0.5 x_s^2 + 4 x_s - 3.5 = 0 \quad | \quad \cdot (-2)$$

$$\Leftrightarrow x_s^2 - 8x_s + 7 = 0$$
 Anwenden der p-q-Formel

$$x_{1/2} = 4 \pm \sqrt{4^2 - 7} = 4 \pm \sqrt{16 - 7} = 4 \pm \sqrt{9} = 4 \pm 3$$
 $\Rightarrow x_1 = 7$; $x_2 = 1$

Berechnung der y-Koordinaten der Schnittpunkte durch Einsetzen der x-Koordinaten in eine der beiden Funktioen.

$$y_1 = g(x_1) = 2.7 - 6 = 14 - 6 = 8$$
 $y_2 = g(x_2) = 2.1 - 6 = 2 - 6 = -4$

Die Schnittpunkte sind $S_1(1|-4)$ und $S_2(7|8)$.

f) Berechne die Ableitung von g(x) an an der Stelle $x_0=3$, also g'(3). Benutze eine Methode deiner Wahl.

$$g(x) = 0.5x^2 - 2x - 2.5$$

1. Möglichkeit: x-Methode

$$g'(3) = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3} \frac{0.5 x^2 - 2 x - 2.5 - (0.5 \cdot 3^2 - 2 \cdot 3 - 2.5)}{x - 3} = \lim_{x \to 3} \frac{0.5 x^2 - 2 x + 1.5}{x - 3}$$

Nebenrechnung Polynomdivision:

$$\begin{array}{r}
(0.5 x^2 - 2x + 1.5) : (x - 3) = 0.5 x - 0.5 \\
0.5 x^2 - 1.5 x \\
\hline
-0.5 x + 1.5 \\
-0.5 x + 1.5 \\
\hline
0$$

Also
$$g'(3) = \lim_{x \to 3} 0.5x - 0.5 = 0.5 \cdot 3 - 0.5 = 1.5 - 0.5 = 1$$

1. Möglichkeit: h-Methode

$$g'(3) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = \lim_{h \to 0} \frac{0.5 \cdot (3 + h)^2 - 2 \cdot (3 + h) - 2.5 - (0.5 \cdot 3^2 - 2 \cdot 3 - 2.5)}{h}$$

$$= \lim_{h \to 0} \frac{0.5 \cdot (9 + 6h + h^2) - 6 - 2h + 1.5}{h} = \lim_{h \to 0} \frac{4.5 + 3h + 0.5 h^2 - 6 - 2h + 1.5}{h} = \lim_{h \to 0} \frac{h + 0.5h^2}{h}$$

$$= \lim_{h \to 0} 1 + 0.5 h = 1 + 0 = 1$$

g) Berechne die übrigen Nullstellen von h(x). $h(x) = x^3 - 7x^2 + 7x + 15$; $x_1 = 3$

Die Nullstellen sind die Lösung der Gleichung: $x_n^3 - 7x_n^2 + 7x_n + 15 = 0$ Berechne:

$$(x^{3}-7x^{2}+7x+15):(x-3)=x^{2}-4x-5$$

$$x^{3}-3x^{2}$$

$$-4x^{2}+7x+15$$

$$-4x^{2}+12x$$

$$-5x+15$$

0 Also kann man h(x) auch in der Form $h(x)=(x-3)\cdot(x^2-4x-5)$ schreiben.

 $(x_n-3)\cdot(x_n^2-4x_n-5)=0$ Betrachte nur noch die zweite Klammer.

 $x_n^2 - 4x_n - 5 = 0$ Anwenden der p-q-Forme $x_{2/3} = 2 \pm \sqrt{4 + 5} = 2 \pm \sqrt{9} = 2 \pm 3$ $\Rightarrow x_2 = -1$; $x_3 = 5$

Die weiteren Nullstellen liegen bei $x_2=-1$ und $x_3=5$.